

Vibrio Species Causing Vibriosis

Cholera and Other Vibrio Illness Surveillance (COVIS) System Annual Summary, 2019

On This Page	
Surveillance Summary	Seafood, Marine, and Estuarine Exposures
Geographic Distribution of Vibriosis Cases in the United States	National Cholera Surveillance
Demographic and Clinical Characteristics of Patients	Appendix: Method for Classification of Transmission Routes in COVIS
Routes of Transmission	

Surveillance Summary

In 2019, 2,719 Vibrio infections were reported to COVIS.

- 2,708 were cases of vibriosis. Vibriosis is defined as infection with pathogenic species of the family *Vibrionaceae* other than toxigenic *Vibrio cholerae* serogroups O1 and O139 (which are generally associated with epidemic or pandemic cholera).
 - 1,585 were culture-confirmed cases.
 - 1,100 were probable cases detected by a culture-independent diagnostic test (CIDT) and not culture-confirmed.
 - 23 were probable cases linked epidemiologically to a laboratory-diagnosed case. Note: Epi-linked cases are not included in the analyses below.
- 11 were cholera cases. Cholera is defined as infection with toxigenic cholerae serogroup O1 or O139.

Geographic Distribution of Vibriosis Cases in the United States

Jurisdictions that reported vibriosis cases to COVIS during 2019 are shown in Figures 1a–1c.

- 49 jurisdictions reported 2,685 vibriosis cases (Figure 1a).
 - Atlantic Coast states reported 789 (29%)
 - Gulf Coast states reported 689 (26%)
 - Non-coastal states reported 685 (26%)
 - Pacific Coast states reported 522 (19%)
- 43 jurisdictions reported 670 V. parahaemolyticus cases (Figure 1b).
 - Pacific Coast states reported 221 (33%)
 - Atlantic Coast states reported 208 (31%)
 - Non-coastal states reported 137 (20%)
 - Gulf Coast states reported 104 (16%)
- 26 jurisdictions reported 159 V. vulnificus cases (Figure 1c).
 - Gulf Coast states reported 83 (52%)
 - Atlantic Coast states reported 50 (31%)
 - Non-coastal states reported 15 (9%)
 - Pacific Coast states reported 11 (7%)

Figure 1a	Figure 1b	Figure 1c
-----------	-----------	-----------

Number of vibriosis cases reported to COVIS, by jurisdiction,* United States, 2019 (n=2,685)

*Jurisdictions include states and Washington, D.C.

Data Table	-
Location 🔺	Vibriosis Range
O Wyoming	1 to 9
West Virginia	10 to 24
Wisconsin	25 to 49
Washington	150+
◯ Vermont	1 to 9
Virginia	50 to 149
O Utah	10 to 24
Texas	150+
Tennessee	25 to 49
South Dakota	0
South Carolina	25 to 49
Rhode Island	10 to 24
Pennsylvania	50 to 149
Oregon	25 to 49
Oklahoma	1 to 9
Ohio	25 to 49
New York	150+
Nevada	1 to 9
New Mexico	1 to 9
New Jersey	50 to 149
New Hampshire	1 to 9
Nebraska	25 to 49
North Dakota	1 to 9
North Carolina	50 to 149
Montana	1 to 9
Mississippi	10 to 24
Missouri	25 to 49

Minnesota	50 to 149
Michigan	25 to 49
OMaine	1 to 9
Maryland	50 to 149
Massachusetts	50 to 149
Louisiana	50 to 149
Kentucky	25 to 49
Kansas	10 to 24
Indiana	10 to 24
Illinois	50 to 149
◯ Idaho	0
	1 to 9
Hawaii	25 to 49
Georgia	25 to 49
Florida	150+

Location	Vibriosis Range
Delaware	10 to 24
District Of Columbia	10 to 24
Connecticut	50 to 149
Colorado	50 to 149
California	150+
Arizona	50 to 149
Arkansas	1 to 9
Alabama	25 to 49
Alaska	1 to 9

Download 💵 [XLS – 795 B]

Number of *V. parahaemolyticus* cases reported to COVIS,* by jurisdiction,† United States, 2019 (n=670)

Number of Cases

- 0 🔾
- 🔵 1 to 4
- 🔵 5 to 9
- 10 to 19
- 20 to 39
- 40+

*Includes 15 probable V. parahaemolyticus cases reported by Texas (4), North Carolina (3), Arizona (2), California (1), Colorado (1), Florida (1), Michigan (1), Tennessee (1), and West Virginia (1). †Jurisdictions include states and Washington D.C.

Data Table	+
Location	V. parahaemolyticus Range
O Wyoming	1 to 4
O West Virginia	1 to 4
O Wisconsin	5 to 9
Washington	40+
O Vermont	1 to 4
Virginia	20 to 39
O Utah	5 to 9
Texas	20 to 39
○ Tennessee	1 to 4
◯ South Dakota	0
South Carolina	10 to 19
Rhode Island	5 to 9

Location 🔺	V. parahaemolyticus Range
Pennsylvania	10 to 19
Oregon	20 to 39
Oklahoma	1 to 4
Ohio	5 to 9
New York	40+
○ Nevada	0
O New Mexico	0
New Jersey	20 to 39
New Hampshire	1 to 4
Nebraska	1 to 4
O North Dakota	0
North Carolina	10 to 19
O Montana	0
O Mississippi	1 to 4
Missouri	5 to 9
Minnesota	10 to 19
Michigan	5 to 9
O Maine	1 to 4
Maryland	10 to 19
Massachusetts	20 to 39
Louisiana	10 to 19
Kentucky	1 to 4
Kansas	1 to 4
Indiana	1 to 4
Illinois	20 to 39
O Idaho	0
🔿 lowa	0
🔵 Hawaii	10 to 19
🔵 Georgia	5 to 9
Florida	40+
Delaware	1 to 4
District Of Columbia	1 to 4
Connecticut	20 to 39
Colorado	20 to 39
California	40+
Arizona	5 to 9
○ Arkansas	0
Alabama	1 to 4
Alaska	5 to 9

Number of *V. vulnificus* cases reported to COVIS,* by jurisdiction,† United States, 2019 (n=159)

*Includes 1 probable *V. vulnificus* case reported by Texas (1). †Jurisdictions include states and Washington D.C.

Data Table	+	
Location	V. vulnificus Range	ĺ
○ Wyoming	0	
◯ West Virginia	0	
⊖ Wisconsin	0	
◯ Washington	0	
◯ Vermont	0	
Virginia	10+	
○ Utah	0	
Texas	10+	
Tennessee	3 to 9	
◯ South Dakota	0	
South Carolina	3 to 9	
◯ Rhode Island	0	
Pennsylvania	1 to 2	
Oregon	0	

◯ Oklahoma	0
Ohio	0
O New York	1 to 2
○ Nevada	0
○ New Mexico	0
New Jersey	3 to 9
O New Hampshire	0
Nebraska	1 to 2
○ North Dakota	0
North Carolina	3 to 9
◯ Montana	0
Mississippi	3 to 9
◯ Missouri	0
Minnesota	1 to 2
O Michigan	1 to 2
	0

Location	V. vulnificus Range
Maryland	10+
O Massachusetts	1 to 2
Louisiana	10+
◯ Kentucky	1 to 2
⊖ Kansas	0
	0
Illinois	1 to 2
◯ Idaho	0
⊖ Iowa	0
Hawaii	3 to 9
🔘 Georgia	1 to 2
Florida	10+
OPelaware	1 to 2
O District Of Columbia	0
Connecticut	1 to 2
Colorado	1 to 2
California	3 to 9
 Arizona 	1 to 2
○ Arkansas	0
Alabama	3 to 9
⊖ Alaska	0

Demographic and Clinical Characteristics of Patients

Demographic characteristics and clinical outcomes of patients with vibriosis are shown in Table 1.

- Among culture-confirmed infections, the most frequently reported species was V. parahaemolyticus (655 cases, 41%).
- The median age of patients was 51 years (range <1–103 years); 1,628 (61%) were male.
- 772 (33%) hospitalizations and 70 (3%) deaths were reported.

Table 1

Demographic characteristics and clinical outcomes of patients with vibriosis,* by species, United States, 2019.

		Demographic Characteristics			Clinical Outcomes				
	Cases	Age (years)		Sex		Hospitalizations		Deaths	
Genus and Species	N	Median	Range	Male (n/N)	%	n/N	%	n/N	%
Confirmed cases	1,585	50	<1-93	1,092/1,574	69	454/1,370	33	57/1,426	4
V. parahaemolyticus	655	48	<1-93	456/646	71	114/578	20	7/586	1
V. alginolyticus	277	34	2–92	189/276	68	35/213	16	5/252	2
<i>V. cholerae</i> (excluding toxigenic O1 and O139)†	174	51.5	<1-91	104/173	60	67/161	42	5/162	3
V. vulnificus	158	65	6–93	138/158	87	125/146	86	30/142	21
V. fluvialis	110	60	6-92	63/110	57	44/94	47	4/99	4
V. mimicus	37	55	13-88	25/37	68	8/29	28	1/33	3
G. hollisae	13	43	26-65	11/13	85	6/11	55	0/10	0
V. furnissii	7	59	29-78	3/7	43	4/4	100	0/7	0
V. harveyi	6	57	15-64	2/6	33	1/6	17	0/5	0
V. metschnikovii	6	71.5	10-85	5/6	83	3/6	50	0/6	0
P. damselae	5	54	6–77	4/5	80	3/4	75	1/4	25
V. cincinnatiensis	2	85.5	78-93	2/2	100	2/2	100	1/2	50
V. metoecus	1	41	41-41	0/1	0	1/1	100	0/1	0
V. navarrensis	1	4	4-4	1/1	100	0/0	-	0/1	0
V. ponticus	1	30	30-30	0/1	0	0/1	0	0/1	0
Multiple Species	44	53	4-89	29/44	66	12/36	33	1/36	3
Species not identified	88	47.5	1–90	60/88	68	29/78	37	2/79	3
Probable cases + +	1,100	53	<1-103	536/1,091	49	318/978	33	13/971	1

		Demograp	Demographic Characteristics C				Clinical Outcomes			
	Cases	Age (years)	Sex		Hospitalizatio	Hospitalizations			
Genus and Species	Ν	Median	Range	Male (n/N)	%	n/N	%	n/N	%	
V. cholerae (serogroup not specified)	197	49	<1-97	98/196	50	56/166	34	3/176	2	
V. parahaemolyticus	15	65.5	24-85	8/15	53	0/14	0	0/15	0	
V. vulnificus	1	57	57–57	0/1	0	1/1	100	0/1	0	
Species not identified	887	53	<1-103	430/879	49	261/797	33	10/779	1	
Total	2,685	51	<1–103	1,628/2,665	61	772/2,348	33	70/2,397	3	

*Proportions of demographic characteristics and clinical outcomes are based on total cases with known information, by genus and species.

†Includes non-toxigenic V. cholerae non-O1, non-O139 (123 cases); non-O1 (19 cases); serogroup not specified (19 cases); O1 (7 cases); O141 (4 cases); and O75 (2 cases).

††Species are summarized according to how they were reported to COVIS. Multiplex polymerase chain reaction (PCR) panels used to identify the vast majority of probable vibriosis cases are not known to provide species-level results; such cases are considered "Species not identified." However, some brands or laboratory-developed "in-house" PCR tests that are designed to provide species-level results have been reported to COVIS and are therefore included in this table.

Routes of Transmission

Transmission routes are classified based on exposure categories (seafood consumption and marine/estuarine contact) and the type(s) of clinical specimen from which the *Vibrio* bacteria was isolated. More information can be found in the appendix: Method for Classification of Transmission Routes in COVIS. The proportion of domestically acquired cases with each transmission route and species are shown in Figures 2a–c. The frequency of domestically acquired cases by transmission route and month are shown in Figures 3a–c.

- Among 2,214 cases of vibriosis with known travel information, 215 (10%) reported international travel in the 7 days before illness began.
- Of 2,470 domestically acquired vibriosis cases:
 - 1,754 (71%) were classified as foodborne or likely foodborne transmission.
 - 575 (23%) were classified as non-foodborne or likely non-foodborne transmission.
 - 141 (6%) were classified as unknown transmission.

Transmission routes of domestically acquired vibriosis cases,* by species, United States, 2019 (N=2,470)

V. cin	cinnatiensis	s (n=2)								
V. nav	varrensis (n	=1)								
V. por	nticus (n=1)									
Multip	le species	(n=41)								
Speci	es not iden	tified (n=888)							
Total										
0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%

*Includes all vibriosis cases, culture-confirmed and CIDT-positive only, reported to COVIS.

Data Table —									
	Foodborne	Likely Foodborne	Non-Foodborne	Likely Non-Foodborne	Unknown				
V. parahaemolyticus (n=640)	78%	1%	17%	2%	2%				
V. cholerae (n=305)	84%	1%	4%	7%	5%				
V. alginolyticus (n=263)	2%	4%	73%	10%	12%				
V. vulnicifus (n=157)	10%	0%	66%	3%	21%				
V. fluvialis (n=102)	79%	2%	10%	1%	8%				
V. mimicus (n=34)	68%	3%	18%	0%	12%				
G. hollisae (n=13)	85%	0%	8%	0%	8%				
V. furnissii (n=7)	43%	0%	43%	0%	14%				
V. metschnikovii (n=6)	17%	0%	67%	17%	0%				
P. damselae (n=5)	0%	0%	80%	0%	20%				
V. harveyi (n=5)	0%	0%	40%	0%	60%				
V. cincinnatiensis (n=2)	0%	0%	0%	0%	100%				
V. navarrensis (n=1)	0%	0%	100%	0%	0%				
V. ponticus (n=1)	100%	0%	0%	0%	0%				
Multiple species (n=41)	49%	0%	41%	0%	10%				
Species not identified (n=888)	91%	1%	3%	3%	2%				
Total	70%	1%	20%	4%	6%				

Transmission routes of domestically acquired, confirmed vibriosis cases,* by species, United States, 2019 (N=1,475)

 $^{\star}\mbox{Includes}$ vibriosis cases reported to COVIS that were culture-confirmed.

Data Table									
	Foodborne	Likely Foodborne	Non-Foodborne	Likely Non-Foodborne	Unknown				
V. parahaemolyticus (n=627)	78%	1%	17%	2%	2%				
V. alginolyticus (n=263)	2%	4%	73%	10%	12%				
V. vulnicifus (n=156)	9%	0%	67%	3%	21%				
V. cholerae (n=132)	72%	2%	8%	6%	12%				
V. fluvialis (n=102)	79%	2%	10%	1%	8%				
V. mimicus (n=34)	68%	3%	18%	0%	12%				
G. hollisae (n=13)	85%	0%	8%	0%	8%				
V. furnissii (n=7)	43%	0%	43%	0%	14%				
V. metschnikovii (n=6)	17%	0%	67%	17%	0%				
P. damselae (n=5)	0%	0%	80%	0%	20%				
V. harveyi (n=5)	0%	0%	40%	0%	60%				
V. cincinnatiensis (n=2)	0%	0%	0%	0%	100%				
V. navarrensis (n=1)	0%	0%	100%	0%	0%				
V. ponticus (n=1)	100%	0%	0%	0%	0%				
Multiple species (n=41)	49%	0%	41%	0%	10%				
Species not identified (n=80)	51%	4%	29%	4%	12%				
Total	53%	2%	33%	4%	9%				

Transmission routes of domestically acquired probable vibriosis cases,* by species, United States, 2019 (N=995)

Foodborne Likely Foodborne Non-Foodborne Likely Non-Foodborne Unknown

*Includes vibriosis cases reported to COVIS that were CIDT-positive but not culture-confirmed.

Figure 3c

Data Tabio

Data Table									
	Foodborne	Likely Foodborne	Non-Foodborne	Likely Non-Foodborne	Unknown				
V. cholerae (n=173)	92%	0%	1%	7%	0%				
V. parahaemolyticus (n=13)	100%	0%	0%	0%	0%				
V. vulnificus (n=1)	100%	0%	0%	0%	0%				
Species not identified (n=808)	95%	1%	0%	3%	1%				
Total	95%	1%	0%	3%	1%				

Figure 3a Figure 3b

*Includes all vibriosis cases, culture-confirmed and CIDT-positive only, reported to COVIS.

†Month is based on the date of earliest specimen collection. When unavailable, date of illness onset is used. During 2017–2019, 16 vibriosis cases were missing specimen collection and illness onset dates.

Data Table									
	Foodborne	Likely Foodborne	Non-Foodborne	Likely Non-Foodborne	Unknown				
Jan 2017	32	3	16	2	4				
Feb 2017	36	1	15	1	6				
Mar 2017	60	1	14	1	5				
Apr 2017	82	2	29	2	5				
May 2017	89	3	31	6	9				
Jun 2017	107	1	51	6	13				
Jul 2017	215	3	86	11	21				
Aug 2017	187	5	72	11	17				
Sep 2017	140	4	73	10	16				
Oct 2017	116	1	45	5	15				
Nov 2017	80	3	26	4	6				
Dec 2017	55	1	13	0	3				
Jan 2018	54	1	16	3	4				
Feb 2018	45	1	13	3	2				
Mar 2018	90	2	20	2	3				
Apr 2018	88	2	18	3	11				
May 2018	98	2	37	5	13				
Jun 2018	192	1	40	14	11				
Jul 2018	376	5	92	22	26				
Aug 2018	396	5	89	21	22				
Sep 2018	210	6	61	14	19				
Oct 2018	162	6	35	6	16				
Nov 2018	119	2	19	2	10				
Dec 2018	82	2	14	4	4				
Jan 2019	106	1	18	3	4				
Feb 2019	86	0	7	0	4				
Mar 2019	106	3	15	4	4				
Apr 2019	97	4	27	2	6				
May 2019	140	4	32	6	16				
Jun 2019	169	1	55	6	15				
Jul 2019	260	2	108	23	14				
Aug 2019	298	6	79	22	21				
Sep 2019	189	3	58	12	22				
Oct 2019	124	5	45	9	19				
Nov 2019	85	1	24	2	12				
Dec 2019	65	0	17	0	4				

Frequency of domestically acquired, confirmed vibriosis cases,* by month† and transmission route, United States, 2017–2019 (N=4,492)

*Includes vibriosis cases reported to COVIS that were culture-confirmed.

+Month is based on the date of earliest specimen collection when available. When unavailable, date of illness onset is used. During 2017–2019, 11 confirmed vibriosis cases were missing specimen collection and illness onset dates.

Data Table										
		Foodborne	Likely Foodborne	Non-Foodborne	Likely Non-Foodborne	Unknown				
	Jan 2017	19	3	16	2	4				
	Feb 2017	14	1	15	0	6				
	Mar 2017	37	1	14	1	5				
	Apr 2017	48	2	29	1	5				
	May 2017	42	3	31	5	8				
	Jun 2017	51	1	51	6	13				

	Foodborne	Likely Foodborne	Non-Foodborne	Likely Non-Foodborne	Unknown	
Jul 2017	165	3	85	9	21	
Aug 2017	123	5	72	4	16	
Sep 2017	89	4	73	5	16	
Oct 2017	57	1	45	4	15	
Nov 2017	35	3	26	3	6	
Dec 2017	17	1	13	0	3	
Jan 2018	10	1	16	2	4	
Feb 2018	11	1	13	3	1	
Mar 2018	25	2	20	0	3	
Apr 2018	26	2	18	0	9	
May 2018	50	2	37	2	13	
Jun 2018	125	1	40	10	10	
Jul 2018	249	5	92	11	24	
Aug 2018	267	5	89	10	21	
Sep 2018	97	6	61	10	18	
Oct 2018	64	6	35	2	16	
Nov 2018	37	1	19	0	9	
Dec 2018	21	2	14	2	4	
Jan 2019	12	0	18	2	4	
Feb 2019	13	0	7	0	4	
Mar 2019	30	3	15	1	2	
Apr 2019	27	2	27	0	5	
May 2019	59	4	32	5	15	
Jun 2019	94	1	55	5	14	
Jul 2019	168	2	108	13	12	
Aug 2019	183	5	78	14	20	
Sep 2019	95	2	58	9	21	
Oct 2019	50	4	45	5	18	
Nov 2019	31	1	24	2	10	
Dec 2019	19	0	17	0	4	

Frequency of domestically acquired, probable vibriosis cases,* by month† and transmission route, United States, 2017–2019 (N=2,512)

Foodborne
 Likely Foodborne
 Non-Foodborne
 Likely Non-Foodborne
 Unknown

*Includes vibriosis cases reported to COVIS that were CIDT-positive but not culture-confirmed.

†Month is based on the date of earliest specimen collection when available. When unavailable, date of illness onset is used. 5 probable vibriosis cases from 2017–2019 were missing specimen collection and illness onset dates.

Data Table						
	Foodborne	Likely Foodborne	Non-Foodborne	Likely Non-Foodborne	Unknown	
Jan 2017	13	0	0	0	0	
Feb 2017	22	0	0	1	0	
Mar 2017	23	0	0	0	0	
Apr 2017	34	0	0	1	0	
May 2017	47	0	0	1	1	
Jun 2017	56	0	0	0	0	
Jul 2017	50	0	1	2	0	
Aug 2017	64	0	0	7	1	
Sep 2017	51	0	0	5	0	
Oct 2017	59	0	0	1	0	
Nov 2017	45	0	0	1	0	
Dec 2017	38	0	0	0	0	
Jan 2018	44	0	0	1	0	
Feb 2018	34	0	0	0	1	
Mar 2018	65	0	0	2	0	
Apr 2018	62	0	0	3	2	
May 2018	48	0	0	3	0	
Jun 2018	67	0	0	4	1	
Jul 2018	127	0	0	11	2	

	Foodborne	Likely Foodborne	Non-Foodborne	Likely Non-Foodborne	Unknown
Aug 2018	129	0	0	11	1
Sep 2018	113	0	0	4	1
Oct 2018	98	0	0	4	0
Nov 2018	82	1	0	2	1
Dec 2018	61	0	0	2	0
Jan 2019	94	1	0	1	0
Feb 2019	73	0	0	0	0
Mar 2019	76	0	0	3	2
Apr 2019	70	2	0	2	1
May 2019	81	0	0	1	1
Jun 2019	75	0	0	1	1
Jul 2019	92	0	0	10	2
Aug 2019	115	1	1	8	1
Sep 2019	94	1	0	3	1
Oct 2019	74	1	0	4	1
Nov 2019	54	0	0	0	2
Dec 2019	46	0	0	0	0

Seafood, Marine, and Estuarine Exposures

Seafood exposures among domestically acquired vibriosis cases are shown in Tables 2a-c.

- Among patients with domestically acquired vibriosis who reported eating seafood (N=1,233):
 - 685 (56%) consumed oysters, 490 (40%) consumed shrimp, and 468 (38%) consumed fish.

• Among those who reported eating a single seafood item, 287 (47%) ate oysters, 85% of whom consumed them raw.

- Among patients with domestically acquired vibriosis who reported a marine or estuarine exposure (N=714):
 607 (85%) reported having skin exposure to a body of water within 7 days before illness onset.
 - 213 (30%) reported contact with drippings from raw or live seafood.

• 77 (11%) reported contact with marine life.

Table 2aTable 2bTable 2c

Seafood exposures among domestically acquired vibriosis cases,* United States, 2019

	Mollusks			Crustaceans			Other			
	Oysters	Clams	Scallops	Mussels	Shrimp	Crab	Crayfish	Lobster	Finfish	Other Shellfish
Patients who ate single seafood item, n (% of 606)	287 (47)	20 (3)	6 (1)	3 (0)	102 (17)	45 (7)	12 (2)	5 (1)	123 (20)	3 (0)
Patients who ate the single seafood item raw, n (% of n in row above)	244 (85)	14 (70)	0 (0)	1 (33)	8 (8)	4 (9)	0 (0)	1 (20)	23 (19)	0 (0)

*Includes all vibriosis cases, culture-confirmed and CIDT-positive only, reported to COVIS.

Seafood exposures among domestically acquired, confirmed vibriosis cases,* United States, 2019

	Mollusks	Mollusks			Crustaceans				Other	
	Oysters	Clams	Scallops	Mussels	Shrimp	Crab	Crayfish	Lobster	Finfish	Other Shellfish
Patients who ate single seafood item, n (% of 387)	226	17 (4)	5 (1)	2 (1)	42 (11)	29 (7)	8 (2)	4 (1)	53 (14)	1 (0)

	、					, γ			、 γ	
Patients who ate the single seafood item raw, n (% of n in row	193	12	0 (0)	1 (50)	6 (14)	4	0 (0)	1 (25)	13	0 (0)
above)	(85)	(71)				(14)			(25)	

*Includes vibriosis cases reported to COVIS that were culture-confirmed.

Seafood exposures among domestically acquired, probable vibriosis cases,* United States, 2019

	Mollusks			Crustaceans				Other		
	Oysters	Clams	Scallops	Mussels	Shrimp	Crab	Crayfish	Lobster	Finfish	Other Shellfish
Patients who ate single seafood item, n (% of 219)	61 (28)	3 (1)	1 (0)	1 (0)	60 (27)	16 (7)	4 (2)	1 (0)	70 (32)	2 (1)

	Mollusks				Crustace	ans	Other			
	Oysters	Clams	Scallops	Mussels	Shrimp	Crab	Crayfish	Lobster	Finfish	Other Shellfish
Patients who ate the single seafood item raw, n (% of n in row above)	51 (84)	2 (67)	0 (0)	0 (0)	2 (3)	0 (0)	0 (0)	0 (0)	10 (14)	0 (0)

*Includes vibriosis cases reported to COVIS that were CIDT-positive but not culture-confirmed.

National Cholera Surveillance

In 2019, 11 cholera cases were reported to COVIS. These cases are summarized in Table 3.

- All were toxigenic V. cholerae serogroup O1 infections and had a marker (found in the tcpA gene) identified by PCR that identified the isolate as the El Tor biotype.
- 6 (55%) patients were hospitalized, and none died.
- Among 10 cases with travel information, all were international travel-associated. Travel destinations include Kenya (3), Pakistan (2), Yemen (2), Bangladesh (1), India (1), and Kenya (1).

Table 3

Location	Age	Sex	Month of Illness Onset	International Travel	Serogroup	Serotype
Illinois	64	F	February	Pakistan	01	Inaba
Massachusetts	64	F	September	Kenya	01	Inaba
Michigan	67	F	March	Yemen	01	Ogawa
Michigan	38	Μ	August	Kenya	01	Inaba
Minnesota	68	М	February	Pakistan	01	Inaba
Minnesota	36	М	April	Kenya	01	Inaba
Minnesota	40	М	April	Kenya	01	Inaba
New Jersey	72	F	September	India	01	Ogawa
New York	44	F	September	Bangladesh	01	Ogawa
North Carolina	63	М	September	Yemen	01	Ogawa
Wisconsin	43	F	October	Unknown	O1	Inaba

Cases of toxigenic V. cholerae serogroup O1 infection, United States, 2019

**V. cholerae* isolates sent to CDC undergo antimicrobial susceptibility testing through the National Antimicrobial Resistance Monitoring System (NARMS) laboratory. Among 21 toxigenic *V. cholerae* O1 isolates tested by NARMS from 2017–2019, 11 (52%) had antimicrobial resistance to both sulfisoxazole and trimethoprim-sulfamethoxazole. 7 (33%) had intermediate susceptibility to ampicillin. 1 (5%) had intermediate susceptibility to chloramphenicol. 17 (81%) had decreased susceptibility to both ciprofloxacin (MIC >=0.12 ug/mL) and nalidixic acid (MIC >32 ug/mL). None had resistance to ampicillin, azithromycin, chloramphenicol, or tetracycline.

Appendix: Method for Classification of Transmission Routes in COVIS

I. Exposure categories

To classify transmission routes, the first step is to categorize patient exposures. For a given illness episode, more than one patient exposure can be reported to COVIS; each reported exposure is categorized individually. If all exposures fall into a single category, then the case is considered to have a single exposure category. If not, the case is considered to have multiple exposure categories. For a given case, if any exposure is reported, we assume that other exposures for which information was not reported were not present. Exposures are classified using three categories:

- 1. Seafood consumption: Ingestion of any type of seafood. Does not include touching seafood.
- 2. Marine/estuarine contact: Includes direct skin contact with marine/estuarine life, bodies of water, or drippings from raw or live seafood.

3. Unknown or no exposure: All seafood consumption or marine/estuarine exposure history questions are reported as unknown, or no exposures are reported.

II. Specimen site categories

The next step in classifying transmission routes is to categorize reported specimen sites. For a given illness episode, more than one specimen site can be reported; each reported site is categorized individually. If all specimen sites fall into a single category, then the report is considered to have a single specimen site category. If not, then the report is considered to have multiple specimen site categories. Specimen sites are classified using five categories:

1. Gastrointestinal site (GI): stool, bile, appendix, rectum, gall bladder, colon

- 2. Blood or other normally sterile site (sterile): blood, cerebrospinal fluid (CSF), peritoneal fluid, lumbar disc fluid, lymph node, bullae
- 3. Skin or soft tissue site (SST): wound, ear (other than otitis media and middle ear, which are included in 'other, non-sterile site'), appendage, tissue
- 4. Other, non-sterile site (ONS): urine, sputum, aspirate, bronchial washing, effusion, catheter, endotracheal, eye, nasal, placenta, respiratory, sinus, tonsil
- 5. Unknown site (unknown): no specimen site reported or no site specified for 'other'

Note: The lists of sites for each category above are not intended to be exhaustive. Rather, they reflect the sites traditionally reported to COVIS and may be updated if new sites are reported.

III. Transmission route

The final step in classifying transmission involves review of exposure and specimen site categories for each reported case. Cases are classified into one of five transmission routes (foodborne, likely foodborne, non-foodborne, likely non-foodborne, and unknown) based on the criteria below:

1. Single exposure category: seafood consumption

- Foodborne: Vibrio isolated only from GI or sterile site OR Vibrio isolated from multiple specimen site categories, with GI reported.
- Likely Foodborne: Vibrio isolated only from SST, ONS, or unknown sites OR Vibrio isolated from multiple specimen site categories, not including GI.

2. Single exposure category: marine/estuarine contact

- Non-foodborne: Vibrio isolated only from SST or sterile site OR Vibrio isolated from multiple specimen site categories, with SST reported.
- Likely Non-foodborne: Vibrio isolated only from GI, ONS, or unknown sites OR Vibrio isolated from multiple specimen site categories, not including SST.

3. Multiple exposure categories: both seafood consumption AND marine/estuarine contact

- Foodborne: Vibrio isolated only from a GI site OR Vibrio isolated from multiple specimen site categories, with GI reported and SST not reported.
- Non-foodborne: Vibrio isolated only from a SST site OR Vibrio isolated from multiple specimen site categories, with SST reported and GI not reported.
- Unknown: Vibrio isolated only from a sterile, ONS, or unknown site OR Vibrio isolated from multiple specimen site categories, including either 1) both GI and SST or 2) neither GI nor SST.

4. Unknown or no reported exposure (note that categorization is the same as for multiple exposure categories)

- Foodborne: Vibrio isolated only from a GI site OR Vibrio isolated from multiple specimen site categories, with GI reported and SST not reported.
- Non-foodborne: Vibrio isolated only from a SST site OR Vibrio isolated from multiple specimen site categories, with SST reported and GI not reported.
- Unknown: Vibrio isolated only from a sterile, ONS, or unknown site OR Vibrio isolated from multiple specimen site categories, including either 1) both GI and SST or 2) neither GI nor SST.

Last Reviewed: September 19, 2023

Source: Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases